摘要:無論是高壓
電纜或低壓電纜,在施工安裝、運行過程中經常因短路、過負荷運行、絕緣老化或外力作用等原因造成故障。電纜故障可概括為接地、短路、斷線三類。
1、電纜故障的種類與判斷
無論是高壓電纜或低壓電纜,在施工安裝、運行過程中經常因短路、過負荷運行、絕緣老化或外力作用等原因造成故障。電纜故障可概括為接地、短路、斷線三類,其故障類型主要有以下幾方面:
①三芯電纜一芯或兩芯接地。
?、诙嘈揪€間短路。
?、廴嘈揪€*短路。
?、芤幌嘈揪€斷線或多相斷線。
對于直接短路或斷線故障用萬用表可直接測量判斷,對于非直接短路和接地故障,用兆歐表搖測芯線間絕緣電阻或芯線對地絕緣電阻,根據其阻值可判定故障類型。
故障類型確定后,查找故障點并不是一件容易的事情,下面根據筆者的經驗,介紹幾種查找故障點的方法,供參考。
2、電纜故障點的查找方法
(1)測聲法:
所謂測聲法就是根據故障電纜放電的聲音進行查找,該方法對于高壓電纜芯線對絕緣層閃絡放電較為有效。此方法所用設備為直流耐壓試驗機。電路接線如圖1所示,其中SYB為高壓試驗變壓器,C為高壓電容器,ZL為高壓整流硅堆,R為限流電阻,Q為放電球間隙,L為電纜芯線。
當電容器C充電到一定電壓值時,球間隙對電纜故障芯線放電,在故障處電纜芯線對絕緣層放電產生“滋、滋”的火花放電聲,對于明敷設電纜憑聽覺可直接查找,若為地埋電纜,則首先要確定并標明電纜走向,再在雜噪聲音zui小的時候,借助耳聾*或*等音頻放大設備進行查找。查找時,將拾音器貼近地面,沿電纜走向慢慢移動,當聽到“滋、滋”放電聲zui大時,該處即為故障點。使用該方法一定要注意安全,在試驗設備端和電纜末端應設專人監視。
(2)電橋法:
電橋法就是用雙臂電橋測出電纜芯線的直流電阻值,再準確測量電纜實際長度,按照電纜長度與電阻的正比例關系,計算出故障點。該方法對于電纜芯線間直接短路或短路點接觸電阻小于1Ω的故障,判斷誤差一般不大于3m,對于故障點接觸電阻大于1Ω的故障,可采用加高電壓燒穿的方法使電阻降至1Ω以下,再按此方法測量。
測量電路如圖2所示,首先測出芯線a與b之間的電阻R1,則R1=2Rx+R,其中Rx為a相或b相至故障點的一相電阻值,R為短接點的接觸電阻。再就電纜的另一端測出a′與b′芯線間的直流電阻值R2,則R2=2R(L-X)+R,式中R(L-X)為a′相或b′相芯線至故障點的一相電阻值,測完R1與R2后,再按圖3所示電路將b′與c′短接,測出b、c兩相芯線間的直流電阻值,則該阻值的1/2為每相芯線的電阻值,用RL表示,RL=Rx+R(L-X),由此可得出故障點的接觸電阻值:R=R1+R2-2RL,因此,故障點兩側芯線的電阻值可用下式表示:Rx=(R1-R)/2,R(L-X)=(R2-R)/2。Rx、R(L-X)、RL三個數值確定后,按比例公式即可求出故障點距電纜端頭的距離X或(L-X):X=(RX/RL)L,(L-X)=(R(L-X)/RL)L,式中L為電纜的總長度。
采用電橋法時應保證測量精度,電橋連接線要盡量短,線徑要足夠大,與電纜芯線連接要采用壓接或焊接,計算過程中小數位數要全部保留。
(3)電容電流測定法:
電纜在運行中,芯線之間、芯線對地都存在電容,該電容是均勻分布的,電容量與電纜長度呈線性比例關系,電容電流測定法就是根據這一原理進行測定的,對于電纜芯線斷線故障的測定非常準確。測量電路如圖4所示,使用設備為1~2kVA單相調壓器一臺,0~30V、0.5級交流電壓表一只,0~100mA、0.5級交流毫安表一只。
測量步驟:
?、偈紫仍陔娎|首端分別測出每相芯線的電容電流(應保持施加電壓相等)Ia、Ib、Ic的數值。
?、谠陔娎|的末端再測量每相芯線的電容電流Ia′、Ib′、Ic′的數值,以核對完好芯線與斷線芯線的電容之比,初步可判斷出斷線距離近似點。
③根據電容量計算公式C=1/2πfU可知,在電壓U、頻率f不變時C與I成正比。因為工頻電壓的f(頻率)不變,測量時只要保證施加電壓不變,電容電流之比即為電容量之比。設電纜全長為L,芯線斷線點距離為X,則Ia/Ic=L/X,X=(Ic/Ia)L。
測量過程中,只要保證電壓不變,電流表讀數準確,電纜總長度測量,其測定誤差比較小。
(4)零電位法:
零電位法也就是電位比較法,它適應于長度較短的電纜芯線對地故障,應用此方法測量簡便,不需要精密儀器和復雜計算,其接線如圖5所示,測量原理如下:將電纜故障芯線與等長的比較導線并聯,在兩端加電壓E時,相當于在兩個并聯的均勻電阻絲兩端接了電源,此時,一條電阻絲上的任何一點和另一條電阻絲上的對應點之間的電位差必然為零。反之,電位差為零的兩點必然是對應點。因為微伏表的負極接地,與電纜故障點等電位,所以,當微伏表的正極在比較導線上移動至指示值為零時的點與故障點等電位,即故障點的對應點。
圖中K為單相閘刀開關,E為6V蓄電池或4節1號干電池,G為直流微伏表,測量步驟如下:
?、傧仍赽和c相芯線上接上電池E,再在地面上敷設一根與故障電纜長度相等的比較導線S,該導線要用裸銅線或裸鋁線,其截面應相等,不能有中間接頭。
?、趯⑽⒎淼呢摌O接地,正極接一根較長的軟導線,導線另一端要求在敷設的比較導線上滑動時能充分接觸。
③合上閘刀開關K,將軟導線的端頭在比較導線上滑動,當微伏表指示為零時的位置即為電纜故障點的位置。
電氣接地與保護的實際運用
在供配電設計中,接地系統設計占有重要的地位,因為它關系到供電系統的可靠性,安全性。不管哪類用電設備,在供電設計中總包含有接地系統設計。而且,隨著電氣設備使用的要求不同,接地系統也相應不同。尤其進入90年代后,對電氣設備的安全使用也相對的提高了要求,對接地系統設計提出了許多新的內容。我們所處的寶鋼生產區域,設備種類比較多環境也相對復雜,所涉及的電氣接地方式的種類也比較多。
下面我們綜合不同的電氣接地方式,在常用的幾種接地方式中我們不妨分析一下各種接地系統。以應對不同的設備使用合適的接地系統,從而滿足設備使用的安全性。
1.TN-C系統
TN-C系統被稱之為三相四線系統,該系統中性線N與保護接地PE合二為一,通稱PEN線。這種接地系統雖對接地故障靈敏度高,線路經濟簡單,但它只適合用于三相負荷較平衡的場所。綜合性較強的生產區域,單相負荷所占比重較大,難以實現三相負荷平衡,PEN線的不平衡電流加上線路中存在著的由于熒光燈、晶閘管(可控硅)等設備引起的高次諧波電流,在非故障情況下,會在中性線N上疊加,使中性線N電壓波動,且電流時大時小極不穩定,造成中性點接地電位不穩定漂移。不但會使設備外殼(與PEN線連接)帶電,對人身造成不安全,而且也無法取到一個合適的電位基準點,精密電子設備無法準確可靠運行。因此TN-C接地系統不能作為電子儀表設備的接地系統。
2.TN-C-S系統
TN-C-S系統由兩個接地系統組成,*部分是TN-C系統,第二部分是TN-S系統,分界面在N線與PE線的連接點。該系統一般用在建筑物的供電由區域變電所引來的場所,進戶之前采用TN-C系統,進戶處做重復接地,進戶后變成TN-S系統。TN-C系統前面已做分析。TN-S系統的特點是:中性線N與保護接地線PE在進戶時共同接地后,不能再有任何電氣連接。該系統中,中性線N常會帶電,保護接地線PE沒有電的來源。PE線連接的設備外殼及金屬構件在系統正常運行時,始終不會帶電.因此TN-S接地系統明顯提高了人及物的安全性.同時只要我們采取接地引線,各自都從接地體一點引出,及選擇正確的接地電阻值使電子設備共同獲得一個等電位基準點等措施,那么TN-C-S系統可以作為常用電氣設備的一種接地系統。
3.TN-S系統
TN-S是一個三相四線加PE線的接地系統。通常建筑物內設有獨立變配電所時進線采用該系統。TN-S系統的特點是,中性線N與保護接地線PE除在變壓器中性點共同接地外,兩線不再有任何的電氣連接。中性線N是帶電的,而PE線不帶電。該接地系統*具備安全和可靠的基準電位。只要象TN-C-S接地系統,采取同樣的技術措施,TN-S系統可以用作智能建筑物的接地系統。如果計算機等電子設備沒有特殊的要求時,一般都采用這種接地系統。
4.TT系統
通常稱TT系統為三相四線接地系統。該系統常用于建筑物供電來自公共電網的地方。TT系統的特點是中性線N與保護接地線PE無一點電氣連接,即中性點接地與PE線接地是分開的。該系統在正常運行時,不管三相負荷平衡不平衡,在中性線N帶電情況下,PE線不會帶電。只有單相接地故障時,由于保護接地靈敏度低,故障不能及時切斷,設備外殼才可能帶電。正常運行時的TT系統類似于TN-S系統,也能獲得人與物的安全性和取得合格的基準接地電位。隨著大容量的漏電保護器的出現,該系統也會越來越作為智能型建筑物的接地系統。從目前的情況來看,由于公共電網的電源質量不高,難以滿足智能化設備的要求,所以TT系統很少被用電設備種類較復雜的區域采用。
5.IT系統
IT系統是三相三線式接地系統,該系統變壓器中性點不接地或經阻抗接地,無中性線N,只有線電壓(380V),無相電壓(220V),保護接地線PE各自獨立接地。該系統的優點是當一相接地時,不會使外殼帶有較大的故障電流,系統可以照常運行。缺點是不能配出中性線N。因此它是不適用于擁有大量單相設備的生產區域,只能應用與三相用電設備區域。
目前多數生產區域內,要求保護接地的設備非常多,有強電設備,弱電設備,以及一些正常情況下不帶電的導電設備與構件,均必須采用有效的保護接地。如果采用TN-C系統,將TN-C系統中的N線同時用做接地線;或者在TN-S系統中將N線與PE線接在一起,再連接到底板上去;再或不設置電子設備的直流接地引線,而將直流接地直接接到PE線上;有的干脆把N線、PE線、直流接地線混接在一起。以上這些做法都是不符合接地要求的,且是錯誤的。前面已經分析過,在一般的生產區域內,單相用電設備較多,單相負荷比重較大,三相負荷通常是不平衡的,因此在中性線N中帶有隨機電流。另外,由于大量采用熒光燈照明,其所產生的三次諧波疊加在N線上,加大了N線上的電流量,如果將N線接到設備外殼上,會造成電擊或火災事故;如果在TN-S系統中將N線與PE線連在一起再接到設備外殼上,那么危險更大,凡是接到PE線上的設備,外殼均帶電;會擴大電擊事故的范圍;如果將N線、PE線、直流接地線均接在一起除會發生上述的危險外,電子設備將會受到干擾而無法工作。因此生產控制區域及辦公區域內應設置電子設備的直流接地,交流工作接地,安全保護接地,及普通建筑也應具備的防雷保護接地。此外,由于一些辦公區域內多設有具有防靜電要求的程控交換機房,計算機房,消防及火災報警監控室,以及大量易受電磁波干擾的精密電子儀器設備,所以在對這些場所的設計和施工中,還應考慮防靜電接地和屏蔽接地的要求。
下面,我們接著分析一下辦公樓宇建筑物及電氣控制室應采取的各種接地措施。
1.防雷接地:為把雷電流迅速導入大地,以防止雷害為目的的接地叫作防雷接地。
辦公樓宇建筑物及電氣控制室內有大量的電子設備與布線系統,如通信自動化系統,火災報警及消防聯動控制系統,樓宇自動化系統,保安監控系統,辦公自動化系統,閉路電視系統等,以及他們相應的布線系統。從已建成的大樓看,大樓的各層頂板,底板,側墻,吊頂內幾乎被各種布線布滿。這些電子設備及布線系統一般均屬于耐壓等級低,防干擾要求高,zui怕受到雷擊的部分。不管是直擊,串擊,反擊都會使電子設備受到不同程度的損壞或嚴重干擾。因此對智能化樓宇的防雷接地設計必須嚴密,可靠。智能化樓宇的所有功能接地,必須以防雷接地系統為基礎,并建立嚴密,完整的防雷結構。
辦公樓宇建筑物及電氣控制室多屬于一級負荷,應按一級防雷建筑物的保護措施設計,接閃器采用針帶組合接閃器,避雷帶采用25×4(mm)鍍鋅扁鋼在屋頂組成≤10×10(m)的網格,該網格與屋面金屬構件作電氣連接,與大樓柱頭鋼筋作電氣連接,引下線利用柱頭中鋼筋,圈梁鋼筋,樓層鋼筋與防雷系統連接,外墻面所有金屬構件也應與防雷系統連接,柱頭鋼筋與接地體連接,組成具有多層屏蔽的籠形防雷體系。這樣不僅可以有效防止雷擊損壞樓內設備,而且還能防止外來的電磁干擾。
各類防雷接地裝置的工頻接地電阻,一般應根據落雷時的反擊條件來確定。防雷裝置如與電氣設備的工作接地合用一個總的接地網時,接地電阻應符合其zui小值要求。
2.交流工作接地:將電力系統中的某一點,直接或經特殊設備(如阻抗,電阻等)與大地作金屬連接,稱為工作接地。
工作接地主要指的是變壓器中性點或中性線(N線)接地。N線必須用銅芯絕緣線。在配電中存在輔助等電位接線端子,等電位接線端子一般均在箱柜內。必須注意,該接線端子不能外露;不能與其它接地系統,如直流接地,屏蔽接地,防靜電接地等混接;也不能與PE線連接。
在高壓系統里,采用中性點接地方式可使接地繼電保護準確動作并消除單相電弧接地過電壓。中性點接地可以防止零序電壓偏移,保持三相電壓基本平衡,這對于低壓系統很有意義,可以方便使用單相電源。
3.安全保護接地:安全保護接地就是將電氣設備不帶電的金屬部分與接地體之間作良好的金屬連接。即將大樓內的用電設備以及設備附近的一些金屬構件,用PE線連接起來,但嚴禁將PE線與N線連接。
在現場生產區域內,要求安全保護接地的設備非常多,有強電設備,弱電設備,以及一些非帶電導電設備與構件,均必須采取安全保護接地措施。當沒有做安全保護接地的電氣設備的絕緣損壞時,其外殼有可能帶電。如果人體觸及此電氣設備的外殼就可能被電擊傷或造成生命危險。
如果裝有接地裝置的電氣設備的絕緣損壞使外殼帶電時,接地短路電流將同時沿著接地體和人體兩條通路流過,Id=Id'+IR,我們知道:在一個并聯電路中,通過每條支路的電流值與電阻的大小成反比,即,
式中:Id—接地回路中的電流總值
Id'—沿接地體流過的電流
IR—流經人體的電流
rR—人體的電阻
rd—接地裝置的接地電阻
由上式可以看出,接地電阻越小,流經人體的電流越小,通常人體電阻要比接地電阻大數百倍經過人體的電流也比流過接地體的電流小數百倍。當接地電阻極小時,流過人體的電流幾乎等于零。即Id≈Id'。實際上,由于接地電阻很小,接地短路電流流過時所產生的壓降很小,所以設備外殼對大地的電壓是不高的。人站在大地上去碰觸設備的外殼時,人體所承受的電壓很低,不會有危險。
加裝保護接地裝置并且降低它的接地電阻,不僅是保障電氣系統安全,有效運行的有效措施,也是保障設備及人身安全的必要手段。
4.直流接地:在生產辦公區域及電氣控制室內,包含有大量的計算機,通訊設備和自動化設備。在這些電子設備在進行輸入信息,傳輸信息,轉換能量,放大信號,邏輯動作,輸出信息等一系列過程中都是通過微電位或微電流快速進行,且設備之間常要通過互聯網絡進行工作。因此為了使其準確性高,穩定性好,除了需有一個穩定的供電電源外,還必須具備一個穩定的基準電位。可采用較大截面的絕緣銅芯線作為引線,一端直接與基準電位連接,另一端供電子設備直流接地。該引線不宜與PE線連接,嚴禁與N線連接。
5.屏蔽接地與防靜電接地:在生產辦公區域及電氣控制室內,電磁兼容設計是非常重要的,為了避免所用設備的機能障礙,避免甚至會出現的設備損壞,構成布線系統的設備應當能夠防止內部自身傳導和外來干擾。這些干擾的產生或者是因為導線之間的耦合現象,或者是因為電容效應或電感效應。其主要來源是超高電壓,大功率幅射電磁場,自然雷擊和靜電放電。這些現象會對設計用來發送或接收很高傳輸頻率的設備產生很大的干擾。因此對這些設備及其布線必須采取保護措施,免受來自各種方面的干擾。屏蔽及其正確接地是防止電磁干擾的*保護方法??蓪⒃O備外殼與PE線連接;導線的屏蔽接地要求屏蔽管路兩端與PE線可靠連接;室內屏蔽也應多點與PE線可靠連接。防靜電干擾也很重要。在潔凈、干燥的房間內,人的走步、移動設備,各自磨擦均會產生大量靜電。例如在相對濕度10~20%的環境中人的走步可以積聚3.5萬伏的靜電電壓、如果沒有良好的接地,不僅僅會產生對電子設備的干擾,甚至會將設備芯片擊壞。將帶靜電物體或有可能產生靜電的物體(非絕緣體)通過導靜電體與大地構成電氣回路的接地叫防靜電接地。防靜電接地要求在潔靜干燥環境中,所有設備外殼及室內(包括地坪)設施必須均與PE線多點可靠連接。
建筑物接地裝置的接地電阻越小越好,獨立的防雷保護接地電阻應≤10Ω;獨立的安全保護接地電阻應≤4Ω;獨立的交流工作接地電阻應≤4Ω;獨立的直流工作接地電阻應≤4Ω;防靜電接地電阻一般要求≤100Ω。
一幢辦公樓宇的供電接地系統宜采用TN-S系統,按規范宜采用一個總的共同接地裝置,即統一接地體。統一接地體為接地電位基準點,由此分別引出各種功能接地引線,利用總等電位和輔助等電位的方式組成一個完整的統一接地系統。通常情況下,統一接地系統可利用大樓的樁基鋼筋,并用40×4(mm)鍍鋅扁鋼將其連成一體,作為自然接地體。根據規范,該系統與防雷接地系統共用,其接地電阻應≤1Ω。若達不到要求,必須增加人工接地體或采用化學降阻法,使接地電阻≤1Ω。在變配電所內設置總等電位銅排,該銅排一端通過構造柱或底板上的鋼筋與統一接地體連接,另一端通過不同的連接端子分別與交流工作接地系統中的中性線連接,與需要做安全保護接地的各設備連接,與防雷系統連接,與需做直流接地的電子設備的絕緣銅芯接地線連接。在智能大廈中,因為系統采用計算機參與管理或使用計算機作為工作工具,所以其接地系統宜采用單點接地并宜采取等電位措施。單點接地是指保護接地、工作接地、直流接地在設備上相互分開,各自成為獨立系統。不允許把三種接地聯結在一起,再用引線接到總等電位銅排上。實際上這是混合接地,這種接法既不安全又會產生干擾,現在的規范是不允許的。
我們現在所處的生產區域,由于生產環境相對較復雜,作業人員的電氣安全專業知識不全面。在對電氣設備的操作運行中,勢必存在安全危險因素。合理的選擇和使用設備的安全接地方式,是保障設備及生產操作人員安全的基礎。因此,我們在生產區域的設計和施工中要滿足各種設備的安全要求,保障投入使用后的安全性!同時在使用維護過程中,重點注意安全接地設施的可靠性,定期對設備的安全接地設施進行檢查。杜絕因為疏忽而造成設備及人員的傷害。